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Immuno-genomic landscape of osteosarcoma
Chia-Chin Wu 1,10, Hannah C. Beird 1,10, J. Andrew Livingston 2,3,10, Shailesh Advani3, Akash Mitra 1,

Shaolong Cao4, Alexandre Reuben 5, Davis Ingram6, Wei-Lien Wang6, Zhenlin Ju4, Cheuk Hong Leung7,

Heather Lin7, Youyun Zheng1, Jason Roszik 1, Wenyi Wang4, Shreyaskumar Patel2, Robert S. Benjamin2,

Neeta Somaiah 2, Anthony P. Conley2, Gordon B. Mills8, Patrick Hwu2, Richard Gorlick3, Alexander Lazar 6,

Najat C. Daw3,11, Valerae Lewis9,11 & P. Andrew Futreal 1,11✉

Limited clinical activity has been seen in osteosarcoma (OS) patients treated with immune

checkpoint inhibitors (ICI). To gain insights into the immunogenic potential of these tumors,

we conducted whole genome, RNA, and T-cell receptor sequencing, immunohistochemistry

and reverse phase protein array profiling (RPPA) on OS specimens from 48 pediatric and

adult patients with primary, relapsed, and metastatic OS. Median immune infiltrate level was

lower than in other tumor types where ICI are effective, with concomitant low T-cell receptor

clonalities. Neoantigen expression in OS was lacking and significantly associated with high

levels of nonsense-mediated decay (NMD). Samples with low immune infiltrate had higher

number of deleted genes while those with high immune infiltrate expressed higher levels of

adaptive resistance pathways. PARP2 expression levels were significantly negatively asso-

ciated with the immune infiltrate. Together, these data reveal multiple immunosuppressive

features of OS and suggest immunotherapeutic opportunities in OS patients.
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Osteosarcoma (OS) is the most common primary solid
tumor malignancy of the bone predominantly occurring
in adolescents with a second peak in incidence amongst

older adults1. For patients presenting with localized disease at
diagnosis, standard multi-agent chemotherapy combined with
surgical resection yields long-term survival rates of ~70%1,2.
Metastatic disease either at diagnosis or at the time of recurrence
portends a poor prognosis with survival of 20–30%3,4.

Recent whole genome sequencing (WGS) and molecular pro-
filing studies undertaken in predominantly pediatric populations
have shown high levels of chromosome structural variations,
rearrangements resulting from chromothripsis (20–89%) as well
as mutation clusters known as kataegis (50–85% of cases) that
result in significant disease heterogeneity but few recurrent
clinically actionable alterations5–7. These studies have yielded
insights into aberrant signaling pathways such as PI3K/mTOR
(24%)7, IGF signaling (7%)6, and Wnt signaling8. However, the
efficacy of targeted therapies such as mTOR inhibitors in unse-
lected patient populations with relapsed osteosarcoma has been
limited9,10. The degree of genomic instability suggests that the
burden of antigens and neoantigens would provide an immuno-
genic potential in OS. However, this rationale has not met with
the expected responses in current trials using immune checkpoint
inhibitors in OS11,12. Currently, the population of interest for
developing immunotherapy in OS are patients with poor risk
disease (i.e., those with recurrence or metastasis following stan-
dard chemotherapy). Here, we use multi-platform profiling in
parallel on such a population, including both children and adults,
to define the immunogenic potential and to propose strategies to
enhance the efficacy of immunotherapy.

Results
Our cohort consisted of patients with high-grade osteosarcoma
with poor-risk (73% having unfavorable pathologic response to
standard therapy) and adverse survival outcomes (67% deceased)
(Table 1, Supplemental Data 1). This cohort was enriched for
relapsed (13/54; 23%) and metastatic specimens (27/54; 51%). We
first assessed genomic complexity within the cohort by using
high-depth whole genome sequencing (WGS) on 35 specimens
with matched normal (average coverage for tumor and normal
were 78X and 39×, respectively) (Supplemental Data 2). These
data were then integrated with transcriptome, T-cell receptor
(TCR) sequencing, reverse phase protein array (RPPA), and
immunostaining results to characterize the immunogenomic
landscape of OS.

Genomic landscape. The genomic landscape in these largely
advanced tumors was similar to what has been reported (Sup-
plemental Fig. 1, Supplemental Data 3a-b)5–7. No truncating
germline mutations associated with DNA repair were observed. In
addition, no significant differences were seen across the primary,
local recurrence, and lung metastasis specimens in mutation
burden (based on nonsilent single nucleotide variants, small
insertions and deletions), predicted neoantigens, subclonal pro-
portions, copy number alterations, and altered pathways (Sup-
plemental Fig. 2, Supplemental Data 4a-b). Nonetheless, we
identified several interesting genomic features in our cohort.
First, the contribution of mutation signature 8 (Supplemental
Fig. 3a) was positively associated with mutation burden, disease
relapse status, and survival, but not with kataegis (Fig. 1a, b).
Second, the high levels of genomic rearrangements (Supplemental
Fig. 1e) could be divided into two major groups corresponding to
rearrangement signatures 2 (non-clustered) and 4 (clustered)
(Fig. 1c)13. There was a trend for younger patients to have rear-
rangements that are clustered and associated with chromothripsis

as compared with older patients, which was also observed in the
Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) cohort that is composed of mostly pediatric OS
(Fig. 1d, P < 0.01, Wilcoxon rank sum test; Supplemental Fig. 3b).
On average, 18.9% of breakpoints occurred in fragile sites, which is
comparable to the mean found in the BOCA-UK cohort (16.5%)
(Supplemental Data 5). Third, OS cells may maintain viability of
their TP53/RB1 mutation-induced unstable genomes through
whole-genome doubling (WGD) or telomere lengthening6,14,15

(Supplemental Fig. 3c). In our cohort, both WGD and normalized
telomere lengths had significant positive association with high
copy number and rearrangement burden (Fig. 1e P < 0.001, P < 1e-
4, respectively, Pearson’s correlation). Up to 50% (18/36) of
patients had losses of heterozygosity in TP53 and/or RB1 along
with WGD (Supplemental Fig. 1a). Given the inherent lower
likelihood of losing two copies after WGD, this supports that TP53
and RB1 aberrations likely occurred before WGD16,17. Genetic
alterations and expression of TERT do not have significantly
longer telomeres (Supplemental Fig. 3d). Instead, lower expression
levels of ATRX were significantly correlated with longer normal-
ized telomere lengths (Fig. 1f). Seven patients with deleterious
alterations in ATRX as well as one patient with copy number loss

Table 1 Clinical characteristics of 48 patients with
osteosarcoma.

Characteristic n (%)

Median age at diagnosis in years (range) 27 (5-81)
Gender
Male 29 (60)
Female 19 (40)
Race
White 30 (63)
Hispanic 10 (21)
Black 5 (10)
Asian 3 (6)
Disease stage at presentation
Localized 37 (77)
Metastatic 11 (23)
Histologic subtype
Osteoblastic 14 (29)
Fibroblastic 9 (19)
Chondroblastic 6 (13)
Extraskeletal 6 (13)
Dedifferentiated parosteal 5 (10)
Telangiectatic 2 (4)
Giant cell rich 1 (2)
High-grade surface 1 (2)
Other—high grade 4 (8)
Pathologic response to neoadjuvant chemotherapy (n= 41 patients)*
Good (tumor necrosis≥ 90%) 11 (27)
Poor (tumor necrosis < 90%) 30 (73)
Vital status
Alive 16 (33)
Dead 32 (67)
Specimen type (n= 54)**
Primary tumor 14 (26)
Local recurrence 13 (23)
Metastasis 27 (51)
Testing platforms (number of specimens)**
Whole genome sequencing (WGS) 35
RNA sequencing (RNAseq) 51
Reverse phase protein prray (RPPA) 38
T-cell receptor sequencing (TCR) 41
Immunohistochemistry 33

* For patients who received neoadjuvant chemotherapy
**Two samples from same tumor site in 3 patients
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in DAXX had telomere lengths greater than the cohort median
(Fig. 1f). Patient samples with the longest telomere length carried
alterations in both TP53 and ATRX, supporting the permissive
context in which TP53 alterations can allow for activation of
alternative lengthening of telomeres (ALT)18. In addition, the
expression levels of telomere maintenance genes HNRNPA2B1,

WRN, and HUS119, were also significantly correlated with telo-
mere length (P < 0.001, P < 0.05, P < 0.05, respectively, Pearson’s
correlation) (Supplemental Data 6). However, the exact mechan-
isms surrounding telomere maintenance in the ALT pathway is
unclear. Thus, effect of the telomere-related mutations on ALT are
yet to be explored.
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Furthermore, we also compared genomic features based upon
pathologic tumor response to neoadjuvant chemotherapy as well
as a comparison across histologic subtypes. We found that
samples with favorable tumor necrosis (defined as ≥90% necrosis
following chemotherapy) have higher COSMIC 3 signature
scores, telomere lengths, and Th2 T cell scores as compared to
those with poor tumor necrosis (<90%) (Supplemental Data 7).
This suggests that the genomes may be less stable and chronic
activation of immune response in those with favorable necrosis20.

Mutation burdens were not associated with immune infiltrate
levels. The high levels of genomic rearrangements and moderate
point mutation burdens in OS suggests that the levels of neoan-
tigens should be high enough to elicit an immune response21.
Although higher nonsilent mutation burden was associated with
higher number of predicted neoantigens in our cohort (Supple-
mental Fig. 4a), transcriptome immune infiltrate scores (ESTI-
MATE)22 were not influenced by having more neoantigens
(Supplemental Fig. 4b). This was further supported by the lack of
association between an RPPA immune-related markers (Caspase-
7 (cleaved D198), Lck, Syk, and Pded-1L1) (see Methods) and
predicted neoantigen burden (Supplemental Fig. 4c). Similarly,
no relationship was found between immune infiltrate scores
(ESTIMATE) and the total number of rearrangements (Supple-
mental Fig. 4d).

Low level of predicted neoantigen expression. Given the levels of
rearrangements and mutation burden, we explored whether these
genomic alterations are expressed and the potential levels of
neoantigens. Fewer than 30% of expressed nonsynonymous changes

as detected by RNAseq were predicted to be strong-binding
neoantigens (5–30% per patient) (Fig. 2a). As expected, unexpressed
mutations tended to occur in genes that have low expression
(Supplemental Fig. 5a) or whose variant allele frequencies were
<0.25, likely a limit in sensitivity due to RNASeq (Supplemental
Fig. 5b). Limited overlap between point mutations identified in both
DNA and RNA sequencing has been observed in non-small cell
lung cancer as well as glioblastoma suggesting that this finding is
not unique to OS23,24. In addition, few predicted rearrangements
involving coding regions were expressed (Fig. 2b). Of interest,
we observed a positive association between nonsense- mediated
decay (NMD) factors and the number of gene-containing rear-
rangements as well as immune scores (P < 0.05, Pearson’s correla-
tion) (Supplemental Fig. 6), suggesting that there may be substantial
transcript suppression in rearranged OS genomes. Overall, despite
substantial proportions of predicted neoantigenic mutations and
genic rearrangements, there are few alterations ultimately expressed
at high levels.

T-cells present but low T-cell receptor productive clonality. The
majority of specimens (21/33, 64%) showed medium or high
density staining for CD3+ T-cells, which indicated that T-cell
infiltrate was present in a most samples (Supplemental Data 8a).
Lung metastases had higher CD3, CD4 T-cell and M2 macro-
phage (CD163) staining densities than primary specimens (P <
0.05, P < 0.01, and P < 0.05, respectively, Wilcoxon rank sum test)
(Supplemental Data 8b-c). However, T-cell activity as estimated
by productive clonality was low overall (average= 0.09)
with a maximum of 0.3 in comparison to normal skin (0.15)25

and healthy adult female peripheral blood mononuclear cells

Fig. 1 Clinical associations with somatic alterations in OS. a, b Kaplan-Meier survival analysis (disease-free survival for a; overall survival for b) of
mutation signature 8 scores which describe the contribution of mutation signature 8 to the point mutation profile. The cohort was separated into tertiles
based on signature 8 scores. Group 1 (denoted as T1) is the first tertile with lowest mutation signature 8 scores. Groups 2 and 3 (denoted as T2 and T3
respctively) are the next 2 tertiles with higher mutation signature 8 scores. c Hierarchical clustering heatmap of rearrangements classification pattern
identified in our cohort along with clinical features: age of diagnosis (<18 years, 18– < 50 years, and >50 years), tumor specimen type (primary, local
recurrence, metastasis), and vital status (dead, alive). Structural rearrangements were classified based on their type: deletion (del), tandem duplication
(tds), inversion (inv), and interchromosomal translocation (trans), and size, and clustered (denoted as c_) versus non-clustered events. d Boxplot showing
the ratio of clustered rearrangements within associated with chromothriptic regions as compared across three groups of specimens based on age of
diagnosis (<18 years, 18–<50 years, and >50 years). Then significance values (P-values) of the comparisons are from the Wilcoxon rank sum test are
shown in asterisks. e Pearson correlation between normalized telomere length and number of copy number segments of samples. f Pearson correlation
between normalized telomere length and ATRX gene expression level (in log2 scale) of samples. Samples with both ATRX and TP53 alterations, ATRX
alterations alone, and TP53 alterations alone were respectively marked as red, blue, and green color.
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(~0.05–0.2)26 (Supplemental Data 8d). Five cases (WGS_12-15,
WGS_12-23, WGS_12-24, WGS_12-35, WGS_12-7) had one
clone that represented the largest proportion (0.01–1) of the T-
cell population (as measured by homeostatic space) and all of
these had low numbers of T-cell clonotypes (<100) (Supplemental
Fig. 7). These data suggest a lack of T-cell clonal diversity that
may blunt the ability to mount an effective immune response.

Insufficient immune infiltrate. To understand the immune
infiltrate level of OS in a broader context, we compared immune
infiltration scores (ESTIMATE) from our cohort against other
tumor types profiled in The Cancer Genome Atlas (TCGA), the
OS samples from the International Cancer Genome Consortium
(ICGC) and TARGET studies, as well as four additional patients
with metastatic OS who were treated with combination CTLA-4
blockade and PD-L1 blockade but exhibited no objective
responses (Fig. 3a). The median immune scores from the ICGC
cohort, TARGET, and the four pre-treatment OS samples for
patients treated with ICI were comparable to our cohort. Skin
cutaneous melanoma (TCGA-SKCM), lung cancer (TCGA-
LUAD and TCGA-LUSC) and renal clear cell carcinoma (TCGA-
KIRC), are tumor types that have clinical benefit and response to
immune checkpoint blockade related to high immune infiltrate
levels whereas other tumor types are known to have very low
immune infiltrate such as low-grade glioma (TCGA-LGG),
prostate cancer (TCGA-PRAD), and uveal melanoma (TCGA-
UVM) and have seen limited activity with current immu-
notherapy approaches. Within this context, we observed that
specimens from our cohort have intermediate median ESTI-
MATE scores that are lower than melanoma and lung cancer, but
higher than uveal melanoma. When compared to other sarcoma
subtypes, the median immune score of dedifferentiated lipo-
sarcoma (TCGA-DDLPS) and undifferentiated pleomorphic
sarcoma (TCGA-UPS)—2 soft tissue sarcoma subtypes where ICI
are active—are higher than OS samples. We also examined
samples whose ESTIMATE immune scores are in the highest
quartile among all the samples, which may be likely benefit from
the ICI. Overall, 8% (4/51) of our cohort samples, 10% (1/10) of
the ICGC cohort, 15% (12/84) of the TARGET cohort, 0% (0/4)
OS patients treated with ICI are in the highest quartile (Supple-
mental Fig. 8). These data indicate that most of OS specimens we
examined may have insufficient immune infiltrate to elicit
meaningful responses to ICI alone.

Evidence for multiple immuno-modulatory mechanisms. To
characterize and compare the composition of the immune infil-
trate across our samples, we first generated single sample GSEA
gene expression enrichment scores for various immune cell types
for each patient (based on gene lists from Charoentong et al.)27.
Hierarchical clustering on these scores revealed three clusters: C1,
C2, and C3 with increasing levels of immune infiltrate: C1 having
the lowest and C3 having the highest levels of all immune cell
types including CD8 lymphocytes (Fig. 3b, Supplemental Fig. 9a).
These significantly different levels of expression were also
reflected in the immune infiltrate scores that were present (by
ESTIMATE and TIMER)28 (Fig. 3c, Supplemental Fig. 9b-h) as
well as cytolytic scores29 (GZMA and PRF1) (Fig. 3d). The
TARGET dataset also revealed several clusters, two of which are
comparable to our C1 “cold” and C3 “hot” immune infiltrate
groups (Supplemental Fig. 10). For our cohort, 9 of the 14 older
patients (age > 50) were in the C3 group with higher immune
infiltrate levels (Fig. 3b). This finding corresponded with the
significantly higher CD8+ T-cell immunostaining that was
orthogonally demonstrated amongst older patients (P < 0.01,
Wilcoxon rank sum test) (Supplemental Data 9a-b).

We then interrogated whether tumor-intrinsic immunosup-
pressive pathways were enriched between the “cold” C1 cluster
and the relatively “hot” C3 cluster. Among those enriched
deregulated pathways identified were: PD1 signaling, CTLA4
pathway, IFNG signaling, and others (Fig. 3e). This suggests that
C3 tumors are actively enhancing expression of signals that
inhibit T-cell activation (PD-L1, CTLA4, IFNG) as well as
molecules such as IDO1 that participate in the recruitment of
immunosuppressive cells. Although TCR productive clonality
measures were higher in C3 than in C1, they were still low overall
(Supplemental Fig. 9i). The lack of high TCR productive clonality
amongst C3 may be due to adaptive immune resistance
mechanisms such as higher PD-L1, CTLA4, IDO1 expression
levels and the presence of myeloid-derived suppressor cells
(MDSCs) in the C3 group as compared to C1 (Fig. 3e, f). For C1,
the lack of TCR productive clonality could be explained in part by
the lower levels of HLA antigen-presenting genes than seen in C3
(Supplemental Data 8e) and the number of deleted genes.

Recent studies have shown that high levels of genome
aneuploidy in cancer are associated with lower levels of
immune-related markers30,31. Indeed, higher number of copy
number losses correlated with lower ESTIMATE immune
infiltrate scores (P < 0.05, Pearson’s correlation), confirmed by
the TARGET cohort (Fig. 4a, b). Also, specimens in C1 had a
significantly higher number of deleted genes (Supplemental
Fig. 10a). For the TARGET cohort, the number of genes with
copy number gain were also negatively correlated with ESTI-
MATE immune scores whereas that was not seen in our cohort
(Supplemental Fig. 11b). No significant relationship was observed
among the three clusters in mutation burdens, numbers of
predicted neoantigens, and numbers of rearrangements. A
separate multiple regression analyses comparing genomic
instability factors (number of losses, gains, rearrangements,
somatic point mutations) and immune score revealed that losses
had the greatest association with immune score (P < 0.01,
multiple linear regression). To identify genes with genomic
alterations that were significantly associated with immune
infiltrate, we applied an integration analysis of genomic
alterations and ESTIMATE immune infiltrate scores. As the top
hit for copy number losses, both TP53 loss and expression were
significantly negatively correlated with ESTIMATE immune
scores (See Methods and Supplemental Data 10b). Neither PTEN
loss nor expression were associated (Supplemental Data 10a-c),
contrary to what was found by Roh et al. in melanoma31. Thus,
tumor type-specific associations may exist. Interestingly, the gene
expression (Fig. 4c) and copy number gain of PARP2 (Fig. 4d), a
druggable target, are both significantly negatively associated with
the ESTIMATE immune score. This relationship between PARP2
expression and immune score was recapitulated in the TARGET
dataset (Supplemental Fig. 11c). Thus, taken together, these data
indicate that there are likely multiple immune-suppressive
mechanisms in play in OS.

Discussion
We conducted a comprehensive genomic and immune char-
acterization of post-treatment primary, local recurrence, and
metastasis OS specimens from a cohort of poor prognosis patients
to determine molecular bases for the lack of response of OS to
immune checkpoint therapy. We observed very few differences in
the genomic landscapes and expression profiles across the three
groups of samples. However, several interesting genomic features
were identified in our cohort. First, the enrichment in focal
clustered rearrangements amongst younger patients suggests that
oncogenesis may be more driven by catastrophic chromothripsis
events in young OS patients as compared to older adults. Second,
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our data also suggests that there is a temporal order to loss of
TP53 and subsequent ALT and WGD events to promote genome
instability in OS. The role of ALT in genomic instability may
provide a therapeutic target in OS, as proposed by Flynn et al.32.
In addition, we also identified enrichment for mutation signatures
5 and 8 as Behjati et al.6, and found signature 8 is significantly
associated with worse prognosis. Mutation signature 3 was the
predominant mutational signature enriched in the TARGET

cohort33. This discrepancy may be due to patient age (our cohort
has more older patients) or that this enrichment is prevalent in
particular subsets of OS that are yet to be defined.

We defined three broad immune subsets (C1, C2, C3) with low,
intermediate, and high levels of immune infiltrate—so called
“hot” and “cold” tumors. Although the level of immune infiltrate
and activity is high in a subset of OS (C3), an ineffective immune
response may be due to the lack of neoantigens or to the presence
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of tumor-intrinsic adaptive immune resistance mechanisms that
allow for immune evasion or lack of T-cell activation (e.g., PD-L1,
CTLA4, and MDSCs). Identification of a “hot” subset of OS
supports the rationale for developing a biomarker-selected
approaches to future immunotherapy trials in OS. Those with
lower immune infiltrate were void of most types of immune cells

and associated with higher number of genes with copy number
loss as well as decreased HLA expression. This corroborates
previous findings that copy number alterations and aneuploidy
contribute to immune suppression30,31. In fact, out of multiple
genomic alterations including copy number gains, copy number
loss had the highest association with immune suppression in OS.

Fig. 3 Immune profiling. a ESTIMATE immune scores in TCGA tumor types, our OS cohort (MDACC.OS), the OS cohort from ICGC (BOCA-UK.OS), the
OS cohort from TARGET (TARGET.OS), and from four patients who underwent combination CTLA-4 blockade and PD-L1 blockade but exhibited no
objective responses (Immunotherapy.OS). Note that TCGA-THYM is derived from the thymus made up mostly of lymphocytes and would have inflated
scores. b. Unsupervised hierarchical clustering based on ssGSEA enrichment scores of each immune gene list from Charoentong et al. The three
predominant clusters are referred to as “C1” and “C2”, and “C3” immune infiltrate groups. c Boxplot of the ESTIMATE immune scores of samples across the
three immune clusters C1, C2, and C3. The significances of the comparisons were from the Wilcoxon rank sum test are shown in asterisks. d The geometric
mean expression of GZMA and PRF1 genes (cytolytic score) shown as a boxplot across the three immune clusters C1, C2, and C3. The significances of the
comparisons were from the Wilcoxon rank sum test. e Immunosuppressive pathways that are significantly deregulated between immune clusters C1 and
C3. The significance (FDR) of deregulation were from the GSEA analysis. f Fold change and significance of expression difference between C1 and C3 for key
genes from pathways in e: CD274(PD-L1), CTLA4, IDO1, IFNG, IFNGR1, and IL6 (these genes were not present in the gene lists used to define these immune
groups). The linear mode in the limma R package was used to determine significance.
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Fig. 4 Copy number alterations and immune score associations. a, b Pearson correlation of the number of deleted genes and immune scores generated
from ESTIMATE for our OS cohort (a) and the TARGET cohort (b). c Boxplot of PARP2 copy number levels (in log2 level) in each of the immune infiltrate
groups C1, C2, and C3 (as decribed in Fig. 3b). Wilcoxon rank sum test was used to determine significance. d Boxplot of PARP2 gene expression levels (in
log2 level) in each of the immune infiltrate groups C1, C2, and C3 (as decribed in Fig. 3b). Wilcoxon rank sum test was used to determine significance.
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This suggests copy number loss may have greater impact on
cellular pathways than other alterations due to permanent loss of
many genes34.

These data highlight the need to pursue multiple contributors
to immune suppression in OS. It is unlikely that any single
approach will be effective across this patient population. Future
clinical and translational studies should (1) enrich for OS patients
with high immune infiltrate/immune scores who may be more
likely to benefit from immune checkpoint inhibitors with differ-
ing IO approaches for those with low vs. intermediate to high
immune infiltrate, (2) explore novel approaches to enhance
neoantigen expression such as radiation, NMD inhibition, or
intratumoral vaccines, and (3) develop rational combinations of
targeted therapy and immunotherapy. For example, amongst
those with intermediate to high immune infiltrate (C2 and C3)
strategies that combine ICI with other IO agents or targeted
therapies to mitigate the immunosuppressive genes that were
expressed at higher levels in these clusters such as TGFb or the
PI3K pathway warrant further exploration. Conversely, PARP2
gains and increased expression were associated with low immune
infiltrate in cluster group 1 (C1). Inhibiting PARP may render
susceptibility to ICI, therefore this abundance of PARP supports
the rationale for exploring combinations of PARP inhibitors and
immunotherapy in OS. Ongoing translational studies from OS
patients treated with immune checkpoint inhibitors may further
inform the next steps in developing immunotherapy trials for this
patient population35.

In conclusion, the immunogenomic landscape in OS is char-
acterized by genomic complexity and significant disease hetero-
geneity. Rather than promoting a robust immune response, this
genomic complexity may contribute to an immunosuppressive
phenotype through multiple mechanisms that may present
themselves as opportunities for novel therapeutic exploitation.

Methods
Patients and sample collection. Collection and use of patient samples were
obtained by informed consent and approved by the University of Texas MD
Anderson Cancer Center Institutional Review Board. We collected all available
frozen OS specimens for immunogenomic characterization: frozen resected OS
primary tumors (n= 14), locally recurrent OS tumors (n= 13), lung metastases (n
= 27) and matched adjacent normal tissues as well as matched blood (n= 2) from
48 pediatric and adult patients with high-grade OS. The clinical patient char-
acteristics are summarized in Table 1.

Whole genome sequencing (WGS). Genomic DNA (gDNA) was extracted with
the QIAamp DNA Mini kit (Qiagen, Germantown, MD) and used for high depth
paired-end whole genome sequencing. Whole genome sequencing data was gen-
erated at Baylor College of Medicine – Human Genome Sequencing Center (BCM-
HGSC) using established library preparation and sequencing methods. Libraries
were prepared using KAPA Hyper PCR-free library reagents (KK8505, KAPA
Biosystems) on Beckman robotic workstations (Biomek FX and FXp models).
Briefly, DNA (500 ng) was sheared into fragments of approximately 200-600 bp
using the Covaris E210 system (96-well format, Covaris, Inc. Woburn, MA) fol-
lowed by purification of the fragmented DNA using AMPure XP beads. A double
size selection step was employed, with different ratios of AMPure XP beads, to
select a narrow size band of sheared DNA molecules for library preparation. DNA
end-repair and 3’-adenylation were then performed in the same reaction followed
by ligation of the barcoded adaptors to create PCR-Free libraries, and the library
run on the Fragment Analyzer (Advanced Analytical Technologies, Ames, Iowa) to
assess library size and presence of remaining adapter dimers. This was followed by
qPCR assay using KAPA Library Quantification Kit using their SYBR® FAST qPCR
Master Mix to estimate the size and quantification. WGS libraries were sequenced
on the Illumina HiSeq-X instrument using the Reagent Kit v2.5 (FC-501-2501) and
libraries were loaded at an average concentration of 280 pM to generate 150 bp
paired-end reads. Unique aligned sequence in these samples varied between 209 Gb
- 255 Gb per sample. The average insert sizes in these samples were 435 bp median
and 414 bp mode. For each sample, the reads were mapped to the hg19 reference
genome using BWA-MEM, followed by the downstream analyses detailed below.

Somatic point/indel mutation calling and related analysis. Somatic point
variants were called from aligned WGS data using MuTect36. High quality
variants were defined as those with a minimum tumor read depth of ≥30,

minimum matched normal read depth of ≥15, and minimum alternate allele
frequencies in the tumor and normal as ≥0.05 and ≤0.01, respectively. Kataegis
were identified as those genomic regions containing eight or more consecutive
mutations with an average intermutation distance of less than or equal to 1000
bp using the R package, ClusteredMutations37. Indel variants were called using
Pindel38. Pindel raw calls were further filtered to select for calls with score >30,
ESP6500 and 1000 G population minor allele frequencies >0.01, and not intro-
nic. Neoantigens were predicted from the point and indel mutations using
PHLAT39 and NetMHC40.

We used two methods to identify mutation signatures in our samples. First, we
used Nonnegative Matrix Factorization (NMF) to do de-novo mutation signatures
discovery from our patient samples based on the method described by Alexandrov
et al.41. Then, we compared the two identified mutation signatures with the 30
published COSMIC mutation signatures (http://cancer.sanger.ac.uk/cosmic/
signatures) using the cosine similarity metric. Second, we factorized the mutation
spectrum based on the 30 known COSMIC mutation signatures using the fast
combinatorial non-Negative least-square algorithm42 to solve the NMF problem.

Somatic copy number calling and related analysis. Total copy number calls were
derived using HMMcopy43, and log2 scores >0.5 were considered gains while
log2 scores <−0.5 were considered losses. The weighted genome instability index
(WGII)44 was used to quantitatively characterize portion of the genome with copy
number alterations as a measure of chromosomal instability. Focal recurrent copy
number alterations were identified using GISTIC 2.045 at 95% confidence level. The
R package, CNTools46, was used to process the segmented total copy number data
into gene-level data. Allele specific copy number calls, purities, ploidies, and loss of
heterozygosity of the tumor samples were derived using Sequenza47 with default
parameters. Chromothripsis was detected using total copy number profiles by
CTLPScanner48.

Genome doubling. An in-house algorithm was developed with modifications based
on previously published studies17,44 was applied to detect genome doubling in the
samples. The algorithm is detailed below.

(1) Summarize absolute copy number of two alleles in chromosome arm level.
(2) Calculate total number of aberrations (relative to diploid) for each sample

(Ns)

Ns ¼
P44
i¼1

P2
j¼1

CNVi;j � 1
��� ���where CNVi,j is absolute copy number in arm i and j

allele for sample s. We only consider 22 chromosomes (44 arms).
Calculate probability of gain (Ngain) and loss (Nloss) for sample s.

Ps;gain ¼ Ngain=Ns

Ps;loss ¼ Nloss=Ns

(4) Do 10,000 simulation. In each simulation for a sample, we start with 1 copy
in each allele and each arm. Then we sample Ns gain and loss based the gain and
loss probabilities, and add the gain or loss to a randomly selected allele and arm.

(5) Calculate number of simulations (M) in which number of arms with the
major allele copy number ≥2 were higher than that observed in the sample. A p-
value for genome doubling of a sample ¼ M=10;000.

(6) A p-value threshold of 0.001 was used to determine if a sample went
through genome doubling.

(7) Samples with p < 0.001 and major copy number= 2 have 1 genome
doubling. Samples with p < 0.001 and major copy number ≥3 have >1 genome
doubling.

Rearrangement calling and rearrangement signatures. Structural rearrange-
ments were detected from aligned WGS data using BReakpoint AnalySiS
(BRASS)13. We used the list of fragile site genomic locations from Fungtammasan
et al.49 to intersect with the Brass calls to identify rearrangements in the fragile
sites. Expressed rearrangements identification is described in the RNA sequencing
section.

The rearrangement signatures in the samples were identified using the strategy
revised from the previously published studies13 to identify rearrangement
signatures in the samples. First, we separated rearrangements that occurred as focal
catastrophic events (clustered) or focal driver amplicons (unclustered). Nik-Zainal
et al.13 used the piecewise constant fitting method to determine clustered
breakpoints in each sample if the mean of inter-breakpoint distance of clustered
regions are at least 10 times smaller than average inter-breakpoint distance of the
whole genome. This method will be biased if majority of rearrangements are
resulted from chromthripsis. Therefore, we identified clustered rearrangement
breakpoints that locate in the chromothripsis regions using CTLPScanner48.
Second, clustered and unclustered rearrangements are subclassified into deletions,
inversions, tandem duplications, and interchromosomal translocations. Third,
except interchromosomal translocations, other clustered and unclustered
rearrangements are further categorized by their lengths (1–10 kb, 10 kb–100 kb,
100 kb–1 Mb, 1 Mb–10 Mb, more than 10Mb). Finally, we applied Nonnegative
Matrix Factorization (NMF) to the classified matrix of 32 categories of
rearrangements to do de-novo rearrangement signatures discovery from our
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samples. The silhouette width-based method determined two optimal signatures.
Comparisons the two identified rearrangement signatures with the 6 published
signatures identified in the 560 breast cancer samples using the cosine similarity
metric found the two signatures mostly correlate with the signature 2 (correlation
= 0.94) and 4 (correlation= 0.88), respectively.

Telomere length. Telomere lengths of tumor and normal samples were estimated
from WGS data using the TelSeq50. The tool estimates telomere length of a sample
by counting the number of reads containing telomeric repeats, TTAGGG. Con-
sidering telomere length may be associated with patient age or other individual
factor, we used ratio of telomere lengths between pairs of tumor and normal
samples (T/N TL ratio) in our analysis.

Suclonal architecture
Consensus mutations. We used MuSE51 to call the somatic mutations based on
paired tumor normal paired DNAseq data. The SNV called by MuSE are compared
to MuTect. If a mutation is called by both variant caller, we define it as a consensus
mutations. The we define a statistic, overlap ratio ¼ number of consensusmutations

number of MuTectmutations , to
measure the agreement between the two callers. A higher overlap ratio indicates a
better agreement between the two callers. Supplemental Figure 12a shows a
summary histogram of overlap ratio of the two callers.

There is high correlation between tumor purity and consensus calls
(Supplemental Figure 12b) as well as the mutation number versus the overlap ratio
(Supplemental Figure 12c).

Subclonal mutation reconstruction. We applied CliP (Clonal structure identification
through pair-wise penalization)52, for subclonal mutation architecture recon-
struction, using the consensus mutations. Subclonal architecture reconstruction
groups the somatic SNVs according to the proportion of cells in a given sample
that harbor these SNVs (i.e., the Cellular Prevalences of SNVs). CliP utilizes a
model based clustering approach and estimates the model parameters using a
regularized maximum likelihood estimation implemented using alternating direc-
tion method of multipliers (ADMM). CliP is much faster than most existing
methods, and has comparable/better performance which makes CliP ultimately
suitable for large studies. Importantly. Furthermore, CliP does not require the
number of clusters as input, which was required by most clustering based methods.
Sequenza estimated tumor purity and copy number variant data of the 35 OS
samples. Supplemental Fig. 12d shows the summary of subclonal structure of the
35 samples.

RNA sequencing and related analysis. Total RNA of samples was extracted and
libraries made from cDNA using the NuGEN Ovation Ultralow Library System
V2 (San Carlos, CA). For estimation of expressed neoantigens and immune
therapy samples, libraries were generated using Agilent SureSelectXT RNA Direct
(Agilent Technologies) (Supplemental Data 11). RNA sequencing reads of the
samples were mapped to the hg19 reference genome using the STAR aligner53.
For calculation of gene expression, raw count data of each gene were first
obtained using with HTSeq54 and are normalized by scaling the raw library size
using calcNormFactors in edgeR package in R55. Then, Voom transformation
was applied to normalized counts and a linear model fit to the data for differ-
ential expression analysis using the Limma package56. Fusion transcripts were
detected from RNASeq data using MapSplice57. To identified expressed rear-
rangements, we also integrated in-frame rearrangements and fusion transcripts
to identify expressed rearrangements in each sample, whose genomic break-
points detected from WGS data and fusion transcript junction regions detected
from RNA-seq are in the same genic regions.

Immune infiltration scores were calculated from the gene expression data using
several methods: ESTIMATE22, TIMER28, and cytolytic scores (calculated as the
geometric mean of GZMA and PRF1 gene expression values)29. Immune infiltrate
profiles of samples were generated using single sample Gene Set Enrichment
Analysis (ssGSEA) enrichment scores of each immune gene list from Charoentong
et al.27. Pathway analyses of differentially expressed genes between any two
immune clusters were performed using Gene Set Enrichment Analysis (GSEA)58.

Genetic alterations associated with immune infiltrates. We used an integrative
analysis to identity genetic alterations that are associated with immune infiltrates.
We did correlation analysis of the ESTIMATE immune score respectively with
gene alterations and gene expression. The product truncated method was then
applied to combine p-values of two correlation analyses for each gene. Genes with
significant combined p-values (p < 0.01) would have significant correlations of the
immune score both with its genetic alterations and gene expression. We identified
PARP2 whose amplifications and gene expression are both significantly negatively
correlated with the ESTIMATE immune score.

Reverse phase protein array. Tumor lysates were serially diluted from undiluted to
1:16 and arrayed on nitrocellulose-coated slides in an 11 × 11 format and probed
with 304 unique antibodies (Supplemental Data 12a). Of those 299 antibodies
passed quality assurances and were used for further analysis. Following antibody
probing of lysates on the slide, a flatbed scanner was used to produce 16-bit tiff

image with subsequent spot identification and density quantification using the
Array-Pro Analyzer (Meyer Instruments). SuperCurve Rx64 3.1.159 was used to
derive normalized log2 values with further normalization for protein loading
and transformation into linear values. We only included the data for the indi-
vidual antibodies with QC Scores higher than 0.80 in the heatmap. The heatmap
was generated in Cluster 3.060 as a hierarchical cluster using Pearson Correlation
and a center metric. The resulting heatmap was visualized in Treeview61.
Pathway analysis was conducted as previously described. A listing of the anti-
bodies used for each pathway analyzed is in Supplemental Data 12b).

T-cell receptor sequencing. Immunosequencing of the CDR3 regions of human
TCRβ chains was performed using the ImmunoSEQ Assay (Adaptive Bio-
technologies). Through the ImmunoSEQ Analyzer platform, TCRB rearrange-
ments were extracted along with their read counts, read proportions and
appropriate TCRB gene usage. T-cell clonality was defined as 1-Peilou’s evenness
and was calculated on productive rearrangements by:

1þ
XN
i

pi log2 pi= log2 Nð Þ
 !

where pi is the proportional abundance of rearrangement i, and N is the total
number of rearrangements. Difference in T-cell density, unique rearrangements,
and clonality within samples were calculated as the difference between the highest
and lowest values in a tumor, expressed as a percentage of the highest value
[(max–min)/max × 100]. MOI is a measure of the similarity in the T-cell repertoire
between samples ranging from 0 to 1, taking into account the specific rearrange-
ments and their respective frequencies, with an MOI of 1 being an identical T-cell
repertoire. Enriched T-cell rearrangements were calculated by comparing the
peripheral T-cell repertoire in patients with available blood to the tumor T-cell
repertoire. Subsequent analyses were performed only on significantly enriched T-
cell rearrangements within the tumor. Next, the data was split based on the
rearrangements observed in each sample and the proportion of the most abundant
clonotypes were calculated. Following which, clonal space homeostasis was mod-
eled as an extension of population dynamics. A ratio of 0 to 1 was used to
determine how much space was occupied by each TCR clonotype. Clonal spaces
were broken down in Fig. 4b as rare (0 < X < 1e-5), small (1e-5 < X < 1e-4), medium
(1e-4 < X 1e-3), large (0.001 < X < 0.01) and hyper expanded (0.01 < X ≤ 1) clones.

Immunohistochemistry. Decalcified formalin-fixed, paraffin-embedded (FFPE)
blocks of osteosarcoma tissue from surgical resection specimens were retrieved
from MD Anderson’s institutional tumor bank. All specimens were fixed for at
least 8 h in buffered formalin-fixed and decalcified using 10% formic acid. Slides of
hematoxylin and eosin–stained sections were reviewed with a bone and soft
pathologists and two tissue cores (0.6-mm diameter) were extracted from repre-
sentative tumor areas of the FFPE to construct tissue microarrays. Slides of 4-µm-
thick unstained tissue sections were prepared from the tissue microarrays of dec-
alcified FFPE human OS specimens retrieved from the UT MD Anderson’s insti-
tutional tumor bank. Immunohistochemical staining was independently scored by
two pathologists who were blinded to the clinical data at the time of assessment.
The list of antibodies and their dilutions are shown in the Supplemental Data 13.
The correlation between the continuous biomarkers and age at diagnosis was
measured by Spearman correlation coefficient. Wilcoxon rank sum test was used to
compare age at diagnosis between two biomarker subgroups.

Data analysis of the TARGET project. Copy number segment and gene expression
row count data of TARGET OS samples were downloaded from TARGET data
matrix (https://ocg.cancer.gov/programs/target/data-matrix). The same methods
used in our cohort samples were applied to process and analyze these data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The whole genome and RNA sequencing data will be at the European Genome-phenome
Archive under the study accession number: EGAS00001003247. The RPPA data is found
under the study accession number: TCPA00000004. T-cell receptor sequencing is housed
at Adaptive Technologies: [10.21417/CW2020NC].
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